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Abstract In this paper, we extend the method in Cai et al. (J Math Phys 53:103503,
2012) to derive a class of quantum hydrodynamic models for the density-functional
theory (DFT). The most popular implement of DFT is the Kohn–Sham equation, which
transforms a many-particle interacting system into a fictitious non-interacting one-
particle system. The Kohn–Sham equation is a non-linear Schrödinger equation, and
the corresponding Wigner equation can be derived as an alternative implementation of
DFT. We derive quantum hydrodynamic models of the Wigner equation by moment
closure following Cai et al. (J Math Phys 53:103503, 2012). The derived quantum
hydrodynamic models are globally hyperbolic thus locally wellposed. The contribution
of the Kohn–Sham potential is turned into a nonlinear source term of the hyperbolic
moment system. This work provides a new possible way to solve DFT problems.
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1 Introduction

The simulation of the N -particle system is a very important topic and has a lot of
application in many fields such as combustion, chemistry, and nuclear physics. As the
exact N -body dynamics cannot realistically be solved except for very small systems,
it is necessary to construct reduced models to capture the principle physical features of
the system while discarding some effects. The simplest reduced model is the Hartree
approximation [18], which regards an N -particle system as N one-particle systems
where each particle moves independently within its own orbital and is affected only
by the average field generated by all the other particles. The Hartree–Fock equations
includes exchange but neglects correlations [13]. The density-functional theory (DFT)
deals with both exchange and correlations in an approximate way. It has been proven
to be an exceedingly powerful tool in quantum mechanical modeling method used
in physics and chemistry to investigate and predict material properties quantitatively
such as atoms and molecules. It is centered around a variational principle that states
that the ground-state energy of a many-body system is a functional of the spatially
dependent density [20]. DFT for the ground state was put on a firm theoretical footing
in [20] and was extended to the time-dependent domain to develop time-dependent
density functional theory (TDDFT) in [31], which may be applied to describe excited
states.

All these approaches are rather costly from the point of view of computation. The
Hartree–Fock equations are nonlocal in space. The Kohn–Sham equations [21] are a
widely used implementation method of DFT, especially for the ground state problems.
It involves finding N -eigenfunctions of the nonlinear Schrödinger equations. And the
wavefunction may change abruptly in the real space, so it makes the computation work
formidable for systems with large number of particles. The Wigner-Vlasov approach
requires meshing of a six-dimensional phase space.

Therefore it would be useful to develop a reduced model that allows more straight-
forward investigation of the collective electron dynamics. Researchers have been work-
ing to derive more efficient implementations of DFT such as the quantum hydrody-
namic models. Before the turn up of DFT, Bloch introduced a hydrodynamic model
describing an electron gas heuristically [3] as an extension of the Thomas-Fermi model.
Only macroscopic variables (electron density, velocity, pressure and electron static
potential) appear in the theory. The closure of the Euler equations and the Poisson equa-
tion is done by adding some equation of state. In the original paper [3], Bloch identified
P with the kinetic pressure of a degenerate Fermi gas. Bloch’s hydrodynamic theory
has been applied to a variety of kinetic problems with minor improvements (inclusion
of exchange, correlation, and quantum gradient corrections). Ghosh, Berkowitz and
Parr gave a thermodynamical interpretation of the density functional theory in the
1984 paper [16]. The GBP approach nicely takes the form of a thermodynamics with
a local temperature. Recently in [10], a quantum hydrodynamic model, derived from
the Wigner-Poisson equations, is used to investigate the ultrafast electron dynamics in
thin metal films. A quantum hydrodynamic model was recently developed in [22] by
taking moments of the Wigner phase-space distribution. The moment closure is done
by constructing a relation between the pressure and the density under the assumption
that metallic nano-structures can be regarded as operating effectively at zero electron
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temperature. There are many other jobs studying the quantum hydrodynamics models
based on DFT, e.g., [14,23,24,33].

These quantum hydrodynamic models in the literatures are derived by proposing
some additional equations of state. These equations of state may be derived by con-
structing the appropriate distribution function [10,11]. The derived moment system
may suffer from the lack of the well-posedness, which make the calculation unreliable
and formidable. Recently, a globally hyperbolic closure method has been derived from
the Wigner equation in our previous paper [4,5]. The method in [5] can be regarded as a
series of extended quantum hydrodynamic models. In this paper, we extend this method
to the corresponding Wigner equation of the Kohn–Sham equation. As the result, a
globally hyperbolic moment system is obtained. The contribution of the Kohn–Sham
potential is turned into a nonlinear source term of the hyperbolic moment system. We
study the moment system for quantum harmonic oscillator with one and two particles.
It is found that for the one-particle system, the solution of the Kohn–Sham equation is
exactly the solution of the moment system. For the two-particle system, the residual
of the moment system is going to zero with the increasing of the moment expansion
order. These two examples indicate that the quantum hydrodynamic model is possible
to provide an approximation to the Kohn–Sham equation with satisfied quality.

The rest of this paper is arranged as follows: in Sect. 2 we introduce the Wigner
equation of DFT briefly. The globally hyperbolic regularized moment system of the
corresponding Wigner equation is derived in Sect. 3. In Sect. 4, we extend the procedure
to the time dependent case in the trivial style. In Sect. 5, we study quantum harmonic
oscillators. The concluding remarks are in the last section.

For convenience, we only consider the Hartree atomic units, that is, the assumption
h̄ = m = e = 1 holds, where h̄ is the Planck constant, m is the effective mass of
electron and e is the positive electron charge.

2 Wigner equation of density functional theory

The DFT [20] declares that the total energy of the many-electron system is a functional
of the electron density and the correct ground state electron density minimizes this
energy functional. It lays the groundwork for reducing many-body problem of N
electrons with 3N spatial coordinates to 3 spatial coordinates, through the use of
the functionals of the electron density. One of the key assumptions to realize the
calculation of DFT is that an auxiliary noninteracting one-particle system may have
the same density as the real interacting many-body system. Thus the density can be
written as the sum of the norm squares of a collection of single-particle orbitals

ρ(x) =
N∑

n=1

|ψn(x)|2, (1)

where the orbitals ψn(x), n = 1 . . . , N , are called Kohn–Sham (KS) orbitals [21]
and x ∈ R

3. The KS orbitals are the eigenfunctions of the following Kohn–Sham
equations
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E jψ j (x) =
[
−∇2

2
+ VKS[ρ](x)

]
ψ j (x), (2)

where the Kohn–Sham potential is the sum of three terms,

VKS[ρ](x) = Vext(x)+ VH[ρ](x)+ Vxc[ρ](x). (3)

The first term Vext(x) is the external potential, the second term is the Hartree potential

VH[ρ](x) =
∫

ρ(x′)
|x − x′| dx′, (4)

and the third term Vxc[ρ](x) is the exchange-correlation potential, which plays a
crucial role in the DFT. The quality of the solution of DFT essentially depends on the
exchange-correlation term. The origin of this term is the difference between a system
of N interacting many-body system and a noninteracting one-body system. Some
approximations to this term were well-developed [8,9,26–28,34]. Since our focus is
other than this term, here we only consider the local density approximation (LDA)
given by

Vxc[ρ](x) = δExc

δρ(x)
= εxc(ρ(x))+ ρ(x)

∂εxc(ρ(x))
∂ρ(x)

. (5)

where the LDA exchange-correlation energy is

Exc = Ex + Ec =
∫
ρ(x)εxc(ρ(x)) dx. (6)

The expression of εxc = εx + εc differs from problems to problems. Taking a homo-
geneous electronic gas (HEG) as an example, the exchange energy is [12,26]

Ex = −3

4

(
3

π

)1/3 ∫
ρ(x)4/3 dx. (7)

The correlation energy of the HEG in the high density limit is given by [15]

εc = 0.0622 ln(rs)− 0.096 + O(rs), (8)

where the Wigner-Seitz radius rs is related to the density as

4

3
πr3

s = 1

ρ
. (9)

Virtually almost all of the concrete application of density functional theory of the
ground state of many-electron systems are based on the well-known Kohn–Sham
scheme [21]. We are interested in an equivalent form of the Kohn–Sham equations,
since our aim is to derive a moment system from the Wigner equation, which is a
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counterpart in quantum mechanics of the Boltzmann equation. Firstly, we define the
density matrix in terms of the Kohn–Sham orbitals {ψi } as

ρ(x, x′) =
∑

i

Piψ
∗
i (x

′)ψi (x), (10)

where Pi = 1, i = 1, . . . , N and Pi = 0, i = N + 1, . . . for ground states. The
Wigner function is then defined as the Wigner transform of the density matrix

f (x, p) = 1

(2π)3

∫
ρ

(
x + y

2
, x − y

2

)
exp(i p · y) d y. (11)

Following the method in [19], we can obtain the dynamic equation for f (x, p)based on
(2). By replacing x in (2) by x+ y/2 and then multiplying both sides withψ∗

j (x− y/2),
we obtain

E jψ
∗
j

(
x− y

2

)
ψ j

(
x+ y

2

)
=−1

2
ψ∗

j

(
x− y

2
)∇2

xψ j (x+ y
2

)

+VKS

(
x+ y

2

)
ψ∗

j

(
x− y

2

)
ψ j

(
x+ y

2

)
. (12)

Then by taking the conjugate of (2), replacing x by x − y/2, and multiplying both
sides with ψ j (x + y/2), we obtain

E jψ j

(
x+ y

2

)
ψ∗

j

(
x− y

2

)
=−1

2
ψ j

(
x+ y

2

)
∇2

xψ
∗
j

(
x− y

2

)

+VKS

(
x− y

2

)
ψ j

(
x+ y

2

)
ψ∗

j

(
x− y

2

)
. (13)

Multiplying (12)–(13) by
i

(2π)3
, integrating with respect to y over R

3 and making

exactly the same argument as in [19], one deduces that the Wigner function defined
in (11) is governed by the stationary Wigner equation

p · ∇x f (x, p)+ (�[VKS] f ) (x, p) = 0, (14)

where the nonlocal Wigner potential term �[VKS] f is a pseudo-differential operator.
It is defined by

(�[VKS] f )(t, x, p) =
∫

Vw(t, x, p′) f (t, x, p − p′) d p′, (15)

where the Wigner potential reads

Vw(t, x, p) = − i
(2π)3

∫ [
VKS

(
t, x + y

2

)
− VKS

(
t, x − y

2

)]
ei y· p d y.

123



1752 J Math Chem (2013) 51:1747–1771

It has been shown in [19] that

(�[VKS] f ) (x, p) = −
∑

λ

1

λ!(2i)|λ|−1

∂λVKS

∂xλ

∂λ f

∂ pλ
, (16)

where λ = (λ1, λ2, λ3) is a 3-dimensional multi-index, |λ| = ∑3
i=1 λi , λ! =∏3

i=1 λi !, xλ = ∏3
i=1 xλi

i ,

∂λ

∂xλ
=

3∏

i=1

∂λi

∂xλi
i

,
∂λ

∂ pλ
=

3∏

i=1

∂λi

∂pλi
i

,

and the summation over λ has to be extended over all λ ∈ N
3 for which |λ| is odd.

Different from the linear Wigner equation, the potential in (16) takes the same
form of the Kohn–Sham potential (3), which consists all the three terms: the external
potential, the Hartree potential and the exchange-correlation potential. The latter two
terms are dependent on the electron density, and this makes the Wigner equation (14)
a nonlinear equation.

It is obvious that ρ(x) = ρ(x, x) by the definitions (1) and (10). Noticing that

ρ(x) =
∫

f (x, p) d p, (17)

the potential energy, including the external potential energy, the Hartree energy and
the exchange-correlation energy, is

∫
ρ(x)VKS dx =

∫ ∫
f (x, p)VKS d p dx. (18)

One can express the total energy in terms of f (x, p) as

Etot =
∫ ∫ { | p|2

2
+ VKS

}
f (x, p) d p dx, (19)

where both the kinetic energy and the potential energy are included.

3 Regularized moment system of the Wigner equation

In this section, we follow the method in [5] to derive the regularized moment system for
the Wigner equation (14) based on DFT. Comparing the stationary Wigner (14) with
the Wigner equation in [5], it is clear that the only difference is that the external electric
potential V appears in [5] is substituted by the Kohn–Sham potential VKS, besides that
the time derivative vanishes. It is worth mentioning that the moment expansion we
adopt is of the Grad type [17].
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3.1 Hermite expansion of the Wigner function

The Grad type moment expansion proposed by Grad [17] approximates the distribution
function by a series of Hermite polynomials. To achieve this, we expand the Wigner
function in the following form as in [5–7],

f (x, p) =
∑

α∈N3

fα(x)HT ,α

(
p − u(x)√

T (x)

)
, (20)

where α = (α1, α2, α3) is a 3-dimensional multi-index. The basis function HT ,α is
defined as

HT ,α(ξ) =
3∏

d=1

1√
2π

T − αd +1
2 Heαd (ξd) exp

(
−ξ

2
d

2

)
, (21)

where Hen(ξ) is the n-degree Hermite polynomial

Hen(ξ) = (−1)n exp

(
ξ2

2

)
dn

dξn
exp

(
−ξ

2

2

)
. (22)

For convenience, Hen(ξ) is taken as zero if n < 0, thus HT ,α(ξ) is zero when any
component of α is negative. Then we give the relation of the primitive variables
ρ(x), u(x), T (x) = kB T , which stand for the charge density, local macroscopic
momentum and scaled local temperature, respectively, to the Wigner function as

ρ(x) =
∫

f (x, p) d p, (23a)

ρ(x)u(x) =
∫

p f (x, p) d p, (23b)

ρ(x)|u(x)|2 + 3ρ(x)T (x) =
∫

| p|2 f (x, p) d p. (23c)

The scaled local temperature here means the local temperature defined in [16] multi-
plied by a Boltzmann constant kB .

Based on the expansion (20) and the equations above, some simple properties of
fα can be deduced:

f0 = ρ, fei = 0,
3∑

d=1

f2ed = 0, i = 1, 2, 3. (24)

where ed is the 3-dimensional unit multi-index with its dth entry to be 1. Moreover,
if we define the pressure tensor P = {Pi j }, i, j = 1, 2, 3, by

Pi j =
∫
(pi − ui )(p j − u j ) f d p, (25)
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then direct calculations give us the relations between them and the coefficients fα as

Pi j − 1

3
δi j

3∑

d=1

Pdd = (1 + δi j ) fei +e j . (26)

By the definition of the temperature (23c) and the tensor pressure (25), the scaled
temperature T is a linear combination of Pi j as

ρT = 1

3

3∑

d=1

Pdd . (27)

With the relation (26), we then have

Pi j = δi jρT + (1 + δi j ) fei +e j . (28)

It is worth mentioning that in (20) both the expansion center u(x) and the expansion
dilation factor

√
T (x) are local parameters, so the expansion (20) will approximate

the Wigner function more efficiently than that with an expansion center and dilation
factor, both or one of them, being globally fixed, especially when a finite cut-off is
introduced.

3.2 Moment expansion of the Wigner equation

We use the same method as in [5] to get the moment equations from the stationary
Wigner equation. For completeness, we give a brief description.

We substitute the Hermite expansion (20) into the Wigner equation (14), and collect
the coefficients of basis functions with the same order on both sides, and then equate the
coefficients of the basis functions of the same order on both sides to yield the derived
moment system. Before that, we list some useful properties of Hermite polynomials
as below [1]:

1. Orthogonality:
∫
R

Hem(x)Hen(x) exp(−x2/2) dx = m!√2πδm,n ;
2. Recursion relation: Hen+1(x) = xHen(x)− nHen−1(x);
3. Differential relation: He′

n(x) = nHen−1(x).

And from the last two relations, we can derive

[Hen(x) exp(−x2/2)]′ = −Hen+1(x) exp(−x2/2). (29)

Especially, we have

∂

∂ p j
HT ,α

(
p − u√

T

)
= −HT ,α+e j

(
p − u√

T

)
. (30)

With these relations, the part

p · ∇x f
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of (14) is expanded as

∑

α∈N3

3∑

j=1

[(
T
∂ fα−e j

∂x j
+u j

∂ fα
∂x j

+ (α j +1)
∂ fα+e j

∂x j

)

+
3∑

d=1

∂ud

∂x j

(
T fα−ed−e j +u j fα−ed +(α j +1) fα−ed+e j

)

+1

2

∂T
∂x j

3∑

d=1

(
T fα−2ed−e j +u j fα−2ed +(α j +1) fα−2ed+e j

)
]

HT ,α

(
p−u√

T

)
.

(31)

Then using (30), we calculate the pseudo-operator term �[VKS] f expressed in (16),
and obtain

(�[VKS] f )(x, p) =
∑

α,λ

1

λ!(2i)|λ|−1

∂λVKS

∂xλ
fα−λHT ,α

(
p − u√

T

)
, (32)

where the summation over λ means the same as that in (16), and fα−λ is taken as zero
when any component of α − λ is negative.

Collecting the two terms (31) and (32) yielded after the substitution of the Hermite
expansion (20) into the Wigner equation (14), we can get the following general moment
equations with a slight rearrangement by matching the coefficients of the same basis
functions:

3∑

j=1

[(
T
∂ fα−e j

∂x j
+ u j

∂ fα
∂x j

+ (α j + 1)
∂ fα+e j

∂x j

)

+
3∑

d=1

∂ud

∂x j

(
T fα−ed−e j + u j fα−ed + (α j + 1) fα−ed+e j

)

+1

2

∂T
∂x j

3∑

d=1

(
T fα−2ed−e j + u j fα−2ed + (α j + 1) fα−2ed+e j

)
]

= −
∑

λ

1

λ!(2i)|λ|−1

∂λVKS

∂xλ
fα−λ. (33)

By setting α = 0 in (33), we deduce the mass conservation equation as

3∑

j=1

(
u j
∂ρ

∂x j
+ ρ

∂u j

∂x j

)
=

3∑

j=1

∂ρu j

∂x j
= 0. (34)

By setting α = ed , with d = 1, 2, 3 and noting that fed = 0 in (33), we obtain
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ρ

3∑

j=1

u j
∂ud

∂x j
+ ρ

∂T
∂xd

+ T ∂ρ

∂xd
+

3∑

j=1

(δ jd + 1)
∂ fed+e j

∂x j
= −ρ ∂VKS

∂xd
,

which can be simplified into

3∑

j=1

u j
∂ud

∂x j
+ 1

ρ

3∑

j=1

∂Pjd

∂x j
= −∂VKS

∂xd
. (35)

By setting α = 2ed , with d = 1, 2, 3 and noting that fed = 0, we get

ρ

2

3∑

j=1

u j
∂T
∂x j

+ ρT ∂ud

∂xd
+

3∑

j=1

3∑

l=1

(1 + α j ) f2ed−el+e j

∂ul

∂x j

+
3∑

j=1

(
u j
∂ f2ed

∂x j
+ (1 + 2δ jd)

∂ f2ed+e j

∂x j

)
= 0. (36)

Noting that
∑3

d=1 f2ed = 0, we sum the equations above over d = 1, 2, 3 to get

3∑

j=1

u j
∂T
∂x j

+ 2

3ρ

3∑

j=1

3∑

d=1

(
Pjd

∂ud

∂x j
+ (1 + 2δ jd)

∂ f2ed+e j

∂x j

)
= 0. (37)

In fluid dynamics,
∑3

j=1 u j
∂

∂x j
is called the convective rate of change [32], which

makes up the substantial derivative with the time derivative. For the stationary Wigner
equation, though the time derivative vanishes, the convective rate of change plays a
special role in the moment equations. Next we will derive equations satisfied by the
convective rate of change of fα and Pi j . Since (27) holds, we have

∂T
∂x j

= 1

3ρ

3∑

d=1

∂Pdd

∂x j
− T
ρ

∂ρ

∂x j
, j = 1, 2, 3. (38)

Substituting (35), (37) and (38) into (33), we eliminate the convective rate of change
of u and T and the spatial derivatives of T . Then the quasi-linear form of the moment
system reads:

3∑

j=1

(
T
∂ fα−e j

∂x j
+ u j

∂ fα
∂x j

+ (α j + 1)
∂ fα+e j

∂x j

)

+
3∑

j=1

3∑

d=1

∂ud

∂x j

(
T fα−ed−e j +(α j +1) fα−ed+e j −

Pjd

3ρ

3∑

k=1

fα−2ek

)

123



J Math Chem (2013) 51:1747–1771 1757

−
3∑

j=1

3∑

d=1

fα−ed

ρ

∂Pjd

∂x j
− 1

3ρ

(
3∑

k=1

fα−2ek

)
3∑

j=1

3∑

d=1

(1+2δ jd)
∂ f2ed+e j

∂x j

+
3∑

j=1

((
− T

2ρ

∂ρ

∂x j
+ 1

6ρ

3∑

d=1

∂Pdd

∂x j

)
3∑

k=1

(
T fα−2ek−e j + (α j + 1) fα−2ek+e j

)
)

= −
∑

λ

1

λ!(2i)|λ|−1

∂λVKS

∂xλ
fα−λ, ∀ |α| ≥ 2. (39)

We should point out again the summation over λ is extended over all the non-negative
integers λd , d = 1, 2, 3 for which |λ| is odd and greater than or equal to 1.

With (28), we can have the equations for Pi j by (38) and (39). Precisely, we have
the equations for Pii/2, i = 1, 2, 3, as

3∑

j=1

u j
∂Pii/2

∂x j
+

3∑

j=1

(
1

2
+ δi j

)
ρT ∂u j

∂x j
+

3∑

j=1

3∑

d=1

(2δi j + 1) f2ei −ed+e j

∂ud

∂x j

+
3∑

j=1

(2δi j + 1)
∂ f2ei +e j

∂x j
= 0. (40)

If i 	= j , we have Pi j = fei +e j , thus these equations are already in (39).
We collect the equations (34), (35), (40) and (39) together to obtain a moment

system with an infinite number of equations. Noting that the relations given in (24)
and the relation between Pi j and fα given in (26), we can see that what we obtain is a
quasi-linear system for {u, Pi j , fα}. We would like to point out that there are two main
differences between the system derived here base on DFT for the ground state and
that derived from time-dependent Wigner equation in [5]. One is the time derivative
term in the later system vanishes, and the other is the potential V (x) is replaced by
VKS(x), which is a nonlinear source term of the quasi-linear system of fα .

3.3 Moment closure by globally hyperbolic regularization

The moment system derived from the stationary Wigner equation consists of (34), (35),
(40) and (39). It is clear that this is a system with an infinite number of equations taking
ρ, ud , Pi j and fα, |α| � 3, as unknowns. To obtain a system with finite unknowns,
we will truncate the expansion (20) and close the system following the method in [4].

Precisely, we let M � 3 be a positive integer, M = { fα}|α|�M be a finite set, and

FM (u, T ) denote the linear space spanned by all HT ,α
(

p−u(x)√
T (x)

)
’s with |α| � M ,

and we truncate the expansion by taking fα 	∈ M as zero, then the expansion (20)
becomes

f (x, p) =
∑

|α|�M

fα(x)HT ,α

(
p − u(x)√

T (x)

)
, (41)
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with f (x, p) ∈ FM (u, T ) and fα ∈ M. The moment equations which contain the
convective rate of change of fα 	∈ M are disregarded in (39) and the spatial derivative
of fα 	∈ SM is taken as zero. Then, (34), (35), (40) and (39) with 2 � |α| � M lead
to a system with a finite number of equations. This is thus an M-order truncation.

Following [4], we let

SM = {α ∈ N
3 | |α| ≤ M},

and permute the element of SM by lexicographic order, then for any α ∈ SM ,

N (α) =
3∑

i=1

(∑3
k=4−i αk + i − 1

i

)
+ 1 (42)

stands for the ordinal number of α in SM , and the cardinal number of set SM is

N = |SM | = N (Me3) =
(

M + 3
3

)
,

where | · | denotes the cardinal number of a set, which is also total number of moments
if an M-order truncation is applied.

Let w = (w1, . . . , wN )
T ∈ R

N and for each i, j ∈ {1, 2, 3} and i 	= j ,

w1 = ρ, wN (ei ) = ui , (43a)

wN (2ei ) = Pii

2
, wN (ei +e j ) = Pi j , (43b)

wN (α) = fα, 3 ≤ |α| ≤ M. (43c)

The moment system (34), (35), (40) and (39) is collected into a quasi-linear form

3∑

j=1

M j (w)
∂w

∂x j
= G(w)w, (44)

by taking the derivatives of fα 	∈ SM to be zero, where M j and G are N × N
matrices and the diagonal entries of M j are all u j . The entries of M j are given as
the coefficients of the terms in (34), (35), (40) and (39) with spatial derivatives of w.
Readers can observe that M j − u j I is independent of u j , and u j I corresponds to the
convective rate of change part, which is same as that in [4]. The entries of G arise
from the nonlocal Wigner potential term. (35) shows

GN (ei ),1 = − 1

ρ

∂VKS

∂xi
, i = 1, 2, 3. (45)

And (39) indicates that other nonzero entries are

GN (α),N (α−λ) = − 1

λ!(2i)|λ|−1

∂λVKS

∂xλ
, (46)
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where |λ| is odd and |λ| is greater than 1 and |α− λ| 	= 1 or 2. In case of |α− λ| = 1,
we have GN (α),N (α−λ) = 0 since fei = 0, i = 1, 2, 3. In case of |α − λ| = 2, (46)
is valid if α − λ = ei + e j , i 	= j , since wN (ei +e j ) = Pi j = fei +e j . The difference
is in case of α − λ = 2ei , i = 1, 2, 3. Precisely by (28), we have

GN (α),N (2e j ) = −
∑

i

(
δi j − 1

3

)
1

(α − 2ei )!(2i)|α|−3

∂α−2ei VKS

∂xα−2ei
, j = 1, 2, 3,

(47)

where i = 1, 2, 3 satisfies that there exists a λ, satisfying |λ| odd and α − λ = 2ei .
All other entries of G vanishes except for the ones specified above. It is clear that

the matrix G is strictly lower triangular, thus it is nilpotent. As a result, the effect of
G to the high order moments is essentially slower than exponential growth rate.

In M-order truncation, as done in [17], we take fα, ∂ fα/∂x j and fα 	∈ SM as
zeroes to close the system. It has been pointed out in [4] that it is not appropriate to
set ∂ fα+e j /∂x j = 0, |α| = M , as the closure proposed in [17] since the system is
lack of hyperbolicity if fα(x), |α| = M − 1 or M is not small enough. To obtain a
system with global hyperbolicity, we adopt the regularization given in [4]. For any α
with |α| = M , we define

R j
M (α) = (α j + 1)

[
3∑

d=1

fα−ed+e j

∂ud

∂x j
+ 1

2

(
3∑

d=1

fα−2ed+e j

)
∂T
∂x j

]
, (48)

and

M̂ j
∂w

∂x j
= M j

∂w

∂x j
−

∑

|α|=M

R j
M (α)IN (α), for any admissible w, (49)

where Ik is the kth column of the N × N identity matrix. We regularize the system
(44) as

3∑

j=1

M̂ j (w)
∂w

∂x j
= Gw, (50)

which is the quantum hydrodynamics model based on DFT we derived. It has been
proved in [4] that

Theorem 1 The regularized moment system (50) is hyperbolic for any w with T > 0.
Precisely, for a given unit vector n = (n1, n2, n3), the matrix

3∑

j=1

n j M̂ j (w) (51)
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is real diagonalizable with real eigenvalues as

u · n + Ck,m

√
T , 1 � k � m � M + 1, (52)

where Ck,m is a root of m-order Hermite polynomial, and satisfies C1,m < · · · < Cm,m.
The structure of the N eigenvectors can be fully clarified.

Based on this theorem, the regularized moment system (50) is locally well-posed due
to the hyperbolicity. We would like to mention here that the regularization here actually
does not add any new terms to the system (44). On the contrary, it has erased the terms
in (39) with a factor α j +1 in its coefficient for the equations of fα with |α| = M only.

3.4 Kohn–Sham potential

In the moment system (50), entries of G rely on the various order derivatives of VKS.
Next, we will investigate precise formation of the various order derivatives of VKS.

In (3), the Kohn–Sham potential is the sum of three terms: the external potential,
the Hartree potential and the exchange-correlation potential. The first term will not be
discussed in this section for which is not dependent on the electron system. For the
Hartree potential, since

VH[ρ](x) =
∫

ρ(x′)
|x − x′| dx′ =

∫
ρ(x′ + x)

|x′| dx′,

we have

∂λVH [ρ](x)
∂xλ

=
∫

1

|x′|
∂λρ(x′ + x)

∂xλ
dx′, (53)

where λ is a multi-index, defined as (16). For the exchange-correlation potential, since
εxc = εx + εc differs from problems to problems, we only consider the homogeneous
electric gas as an example. (7) indicates that

Vx[ρ](x) = δEx

δρ(x)
= −

(
3

π

)1/3

ρ(x)1/3, (54)

hence, we have

∂λVx[ρ](x)
∂xλ

= −
(

3

π

)1/3
∂λρ(x)1/3

∂xλ
. (55)

The correlation energy of HEG in the high density limit is

εc(ρ) ≈ 0.0622 ln(rs)− 0.096, (56)

where rs satisfies

4

3
πr3

s = 1

ρ
.
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Substituting it into (56) to calculate Vc, we can obtain

Vc[ρ](x)=εc(ρ(x))+ρ(x)∂εc(ρ(x))
∂ρ(x)

= 0.0622

3

(
ln

(
3

4π

)
−ln(ρ(x))−1

)
−0.096.

Therefore, the derivative of Vc reads

∂λVc[ρ](x)
∂xλ

= −0.0622

3

∂λ ln(ρ(x))
∂xλ

. (57)

Collecting (53), (55) and (57), one can observe that the various derivatives of VKS are
attributed to the various derivatives of ρ(x). In numerical simulation, we need only to
calculate the various derivatives of ρ to describe the effect of the inner potential.

4 Time dependent Wigner equation

For the time-dependent Kohn–Sham equation

i
∂ψ̃ j (t, x)

∂t
= −1

2
∇2

xψ̃ j (t, x)+ VKSψ̃ j (t, x), (58)

we can obtain the time-dependent equation

∂ f (t, x, p)
∂t

+ p · ∇x f (t, x, p)+ (�[VKS] f ) (t, x, p) = 0, (59)

where

f (t, x, p)= 1

(2π)3
∑

k

Pk

∫
ψ̃∗

j (t, x− y/2)ψ̃ j (t, x+ y/2) exp(i p · y) d y. (60)

The time-dependent Wigner equation will be of interest for the treatment of excited
states and the transient phenomena. For a given initial distribution function which is
not very far away from a ground state distribution, this provides a practical way to
find the ground state other than the Kohn–Sham equations, if the Wigner function will
evolve to its ground state.

Following [5], it is trivial to give the moment system for the time-dependent Wigner
equation (59) from (58). Actually, the time-dependent Wigner equation is also similar
as the Boltzmann equation, thus the closed moment system can be derived (cf. [4,5]).

With the expansion (20),

∂ f (t, x, p)
∂t
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is expanded as

∑

α∈N3

(
∂ fα
∂t

+
3∑

d=1

∂ud

∂t
fα−ed + 1

2

∂T
∂t

3∑

d=1

fα−2ed

)
HT ,α

(
p − u√

T

)
. (61)

Collecting the three terms (61), (31) and (32) yielded after the substitution of Hermite
expansion (20) into the time-dependent Wigner equation (59), we can get the following
general moment equations by matching the coefficients of the same basis functions:

∂ fα
∂t

+
3∑

d=1

∂ud

∂t
fα−ed + 1

2

∂T
∂t

3∑

d=1

fα−2ed

+
3∑

j=1

[(
T
∂ fα−e j

∂x j
+ u j

∂ fα
∂x j

+ (α j + 1)
∂ fα+e j

∂x j

)

+
3∑

d=1

∂ud

∂x j

(
T fα−ed−e j + u j fα−ed + (α j + 1) fα−ed+e j

)

+1

2

∂T
∂x j

3∑

d=1

(
T fα−2ed−e j + u j fα−2ed + (α j + 1) fα−2ed+e j

)
]

= −
∑

λ

1

λ!(2i)|λ|−1

∂λVKS

∂xλ
fα−λ. (62)

In the fluid dynamics, if φ(t, x) is an arbitary differentiable function of the Eulerian
variables x and time t , then

dφ(t, x)
dt

= ∂φ(t, x)
∂t

+ (u · ∇)φ(t, x)

↑ ↑ ↑
substantial derivative time derivative convective rate of change

(63)

where ∇ is the gradient operator with respect to the x components, and the substitution
derivative represents the differentiation “following a fluid particle” [25]. Using this
notation, (62) is reformulated as

d fα
dt

+
3∑

d=1

dud

dt
fα−ed + 1

2

dT
dt

3∑

d=1

fα−2ed

+
3∑

j=1

[(
T
∂ fα−e j

∂x j
+ (α j + 1)

∂ fα+e j

∂x j

)

+
3∑

d=1

∂ud

∂x j

(
T fα−ed−e j + (α j + 1) fα−ed+e j

)
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+1

2

∂T
∂x j

3∑

d=1

(
T fα−2ed−e j + (α j + 1) fα−2ed+e j

)
]

= −
∑

λ

1

λ!(2i)|λ|−1

∂λVKS

∂xλ
fα−λ. (64)

Comparing (64) and (33), the only difference is the convective rate of change in (33)
is replaced by the substantial derivative in (64). Since in Sect. 3.3 the moment system
(44), derived from (33), can be written into

3∑

j=1

(
(M j −u j I)

∂w

∂x j
+u j I

∂w

∂x j

)
=

3∑

j=1

(M j −u j I)
∂w

∂x j
+u · ∇w=Gw, (65)

where u ·∇w represents the convective rate of change, we can get the moment system
corresponding to (64) by replacing the convective rate of change in (65) with the
substantial derivative as

3∑

j=1

(M j − u j I)
∂w

∂x j
+ dw

dt
= ∂w

∂t
+

3∑

j=1

M j
∂w

∂x j
= Gw, (66)

where M and G are the same as that in (44).
In Sect. 3.3, we have pointed out that M may not be real diagonalizable if fα, |α| =

M − 1 or M is not small enough, and a globally hyperbolic regularization was pro-
posed. Here we inherit the regularization, and obtain the globally hyperbolic moment
system as

∂w

∂t
+

3∑

j=1

M̂ j
∂w

∂x j
= Gw, (67)

where M̂ j is the same as that in (50).
Theorem 1 indicates that the moment system (67) is locally well-posed due to the

hyperbolicity. According to the derivation in Sect. 3.3, one find that we get a moment
system, which is an extended hydrodynamic system and can be truncated up to any
order M ∈ N,M ≥ 3, to approximate the time-dependent Wigner equation.

5 Quantum harmonic oscillator

Quantum harmonic oscillators are the quantum-mechanical analogue of classical har-
monic oscillator, and is one of the most important model systems [29]. In this section,
we study the quantum harmonic oscillator for both a one-particle system and a two-
particle system with a parabolic potential. For both systems, the wavefunction of the
Schrödinger equation and the solution of the corresponding Kohn–Sham equation
can be obtained simultaneously. This makes it possible to examine the residual of

123



1764 J Math Chem (2013) 51:1747–1771

the moment system if we substitute the solution of the Kohn–Sham equation into the
moment system. The moment system we derived is then partially validated once it is
observed that the residual of the system is very small such that the moment system is
almost satisfied by the solution of the Kohn–Sham equation.

The one-particle system is fairly simple that its Kohn–Sham equation is the same
as the Schrödinger equation. The moments of the Wigner function for this system are
all zero expect for the density and the temperature. Therefore, it is trivial to verify that
the solution of the Kohn–Sham equation is exactly the solution of the moment system
we derived for arbitrary order.

For the two-particle system, the Kohn–Sham equation with the exchange correlation
potential given in [30] can provide exactly the same density function for the ground
state as the two-particle Schrödinger equation. A few of the low order moments of
the Wigner function can be directly calculated and the magnitude of the moments is
decaying to zero with the increasing of the order of the moments. The solution of the
Kohn–Sham equation is then substituted into the moment system we derived to study
the residual of the moment system. Making use of the decay of the moments, it is
verified that the residual of the moment system is decaying to zero, too.

5.1 One-particle system

The one-dimensional quantum harmonic oscillator describes a single particle in a
parabolic potential

V (x) = −ω2x2/2 (68)

by using the Schrödinger equation

(
−1

2
∇2 + 1

2
ω2x2

)
�(x) = E�(x), (69)

where E denotes an eigenvalue or eigen energy. The ground state is given as

�(x) =
(ω
π

)1/4
exp

(
−ωx2

2

)
, (70)

corresponding to the ground energy

E = 1

2
ω. (71)

The Wigner function corresponding to the wavefunction (70) is

f (x, p) = 1

2π

∫
ψ∗(x + y/2)ψ(x − y/2)eipy dy = 1

π
exp

(
−2ωx2 − p2

2ω

)
.

(72)
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In this case f (x, p) is positive definite and can be straightforwardly interpreted as the
probability distribution in the phase space.

The 1D stationary momentum system for truncation order 3 for the parabolic can
be written as [5]

u
∂ρ

∂x
+ ρ

∂u

∂x
= 0, (73)

ρu
∂u

∂x
+ ∂P

∂x
= −∂V

∂x
ρ, (74)

u
∂P/2

∂x
+ 3

2
P
∂u

∂x
+ 3

∂ f3

∂x
= 0. (75)

− P2

2ρ2

∂ρ

∂x
+ P

2ρ

∂P

∂x
+ u

∂ f3

∂x
= 0. (76)

Using the expression of f (x, p) in (72), we obtain density ρ(x), mean velocity u(x)
and and temperature T (x)

ρ =
∞∫

−∞
f (t, x, p)dp =

√
2ω

π
exp(−2ωx2), (77)

u = 1

ρ

∞∫

−∞
p f (t, x, p)dp = 0, (78)

T = P

ρ
= 1

ρ

∞∫

−∞
(p − u)2 f (t, x, p)dp = ω, (79)

where P is the pressure and in 1D case

P = ρT . (80)

Plugging (77), (78) and (79) into the momentum system (73)–(76), and noting (68), it
is clear that the moments up to order 3 of the Wigner function describing a harmonic
oscillator are the solution of the derived moment system. Further, it is easy to see this
conclusion holds for moments up to any order noting the following trivial fact any
moments of order higher than 3 are zero.

5.2 Two-particle system

Now we consider a two-particle system describing two electrons oscillate in the par-
abolic well (the Hooke’s atom). The two-particle Schrödinger equation is given as

(
−1

2
∇2

x1
− 1

2
∇2

x2
−Vext(x1)−Vext(x2)+ 1

|x1−x2|
)
�(x1, x2)= E�(x1, x2).

(81)
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Here the external potential in the Hooke’s atom is given by

Vext(x) = 1

2
kHooke|x|2, kHooke = 1

4
. (82)

We introduce the difference vector and the center of mass as new variables

x = x1 − x2, X = 1

2
(x1 + x2). (83)

An exact solution of (81) can be obtained (e.g., see [30]). That is, the wave function
of the ground state corresponding to the ground state energy E = 5/2 can be written
as an analytical formula

�(x1, x2) = Ce−X2/2e−x2/8(1 + x/2), (84)

where x = |x| and C = 1/[2π5/4(5
√
π + 8)1/2] = 0.0291122a.u. In [30], this

two-particle system (81) is transformed into the Kohn–Sham equation

(
−1

2
∇2 + VKS

)
ψi (x) = εiψi (x), i = 1, . . . , N , (85)

where

VKS = Vext + VH + Vxc. (86)

The density ρ(x) is defined as

ρ(x) = 2
∫

|�(x, x2)|2 d3x2. (87)

Plugging (84) into (87) yields the analytical expression of ρ(x) = ρ(x) [30],

ρ(x) = π
√

2πC2e−x2/2

{
7 + x2 + 8e−x2/2

√
2π

+ 4(1 + x2)
1

x
erf

(
x√
2

)}
, (88)

where erf(x) is the error function defined by

erf(x) = 2√
π

x∫

0

e−y2
dy. (89)

It is easy to see that ρ(x) is even since

1

x
erf

(
x√
2

)
=

√
2√
π

∞∑

n=0

(−1)n

(2n + 1)2nn! x2n . (90)
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The Kohn–Sham orbitals of (85) are

ϕi (x) = √
ρ(x)/2, i = 1, 2. (91)

The two particles are in the same Kohn–Sham orbitals and have the same Kohn–Sham
energy Ei = 5/4, i = 1, 2 due to spin. With the assumption the functional derivative
VH + Vxc vanishes at infinity, the latter two parts of the Kohn–Sham potential (the first
part is the external potential) can be written in terms of the density as

[VH + Vxc] (x) = Ei + 1

2

∇2√ρ(x)
ρ(x)

− 1

8
x2. (92)

Let us calculate the moments and plug them into our moment equations and find the
residual is going to zero as the order goes to infinity. The Wigner function is defined by

f (x, p) =
2∑

i=1

1

(2π)3

∫
ϕ̄i (x + y/2)ϕi (x − y/2) exp(i p · y) d y. (93)

Plugging (91) into the above equation, we obtain the Wigner function as

f (x, p) = 1

(2π)3

∫ √
ρ(x − y/2)ρ(x + y/2) exp(i p · y) d y. (94)

It is easy to verify that

∫
f (x, p) d p = ρ(x), (95)

ρu =
∫

f (x, p) p d p = 0. (96)

We expand f (x, p) into the Hermite series

f (x, p) =
∑

α

fαHT ,α

(
p√

T (x)

)
, (97)

where

f(0,0,0) = ρ(x), fe j = 0, j = 1, 2, 3,

T (x) = 1

3ρ

∫
| p|2 f (x, p) d p, (98)

which can be calculated by

T = 1

4

1

κ(x2)
− dln κ(t)

dt

∣∣∣∣
t=x2

− 4

3
t

d2

dt2 ln κ(t)

∣∣∣∣
t=x2

, (99)
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where

κ(t) = ρ(
√

t) exp(t/2), (100)

which is equivalent to applying the change of variables x2 → t to the part of ρ(x) in
(88) after dropping the exp(−x2/2) factor.

The first moment equation (34) is reduced into an identity when we plug (95) and
(96) into (34). Actually all the moment equations which are not modified by closure are
satisfied by the moments of f (x, p). We only need to examine the moment equations
of order |α| = M in the regularized moment system of order M which has been
modified due to the truncation and closure. Substituting the exact moments into the
regularized moment system and calculating the residual yields

Res(α) =
3∑

j=1

R j
M (α)+

3∑

j=1

(α j + 1)
∂ fα+e j

∂x j
(101)

where the closure term R j
M (α) is defined in (48) and the truncation term

∑3
j=1(α j +1)

∂ fα+e j

∂x j
is easy to be identified by observing the original moment equation (39). Since

in this two-particle system, u = 0, the residue (101) is reduced into

Res(α) = 1

2
(α j + 1)

(
3∑

d=1

fα−2ed+e j

)
∂T
∂x j

+
3∑

j=1

(α j + 1)
∂ fα+e j

∂x j
. (102)

We use Theorem 2 in [2] to prove that the residue (102) goes to zero as the truncation
order M goes to infinity, i.e.,

lim|α|→∞ Res(α) = 0. (103)

A simple outline of the proof is given as follows. A direct inference of Theorem 2 in
[2] is that a function f (x) in L2(−∞,∞) can be expanded into a converging series

f (x) =
∑

α

fαHα(x), (104)

and

lim
α→∞ fα → 0. (105)

(103) is true if we prove that

lim|α|→0
fα = 0, (106)
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and

lim|α|→0

∂ fα
∂x j

= 0, (107)

since |T | is uniformly bounded because κ(x2) has a low bound greater than zero.
In order to prove (106), we only need to check where f (x, p) is square integrable.

While using the Parseval equality of the Fourier transform, we only need to check
whether

√
ρ(x − y/2)ρ(x + y/2) =

∫
f (x, p) exp(−i p · y) d p (108)

is square integrable. This is obvious since

√
ρ(x− y/2)ρ(x+ y/2)=exp(−x2/2) exp(−y2/8)

√
κ(|x− y/2|2)κ(|x+ y/2|2),

(109)

where
√
κ(|x − y/2|2)κ(|x + y/2|2) is of polynomial growth in y as |y| going to

infinity. The similar argument applied for
∂
√
ρ(x − y/2)ρ(x + y/2)

∂x j
gives (107).

6 Discussion and conclusion remarks

In [5], we extend the moment closure method [4] for the Boltzmann equation to its
quantum counterpart, the Wigner equation. Using the same moment closure technique,
we in this paper derive a class of hydrodynamic models to implement the density
functional theory as an alternative of the Kohn–Sham equations. We study the quantum
harmonic oscillators and validate the proposed models by observing that the residual
yielded by substituting the moments into the moment system goes to zero as the
truncation order goes to infinity. We are now developing numerical method for the
derived model to solve DFT problems.

As the starting point of the present paper, the Wigner function is a six-variable
function. Here we start from the Wigner equation, then take moments of the Wigner
function, and eventually obtain the moment system by taking the moments of the
Wigner equation. After taking the moments, every component in the moment system
is turned back to a three-variable function.

In the Kohn–Sham equations, the unknown is the density, which is a three-variable
function, while to obtain the density, the eigen-system of the Kohn–Sham equations
has to be clarified. To get the eigen-system of Kohn–Sham equations, there are some
essential difficulties with the increasing of the system size. In the moment system we
derived, though the unknowns include a set of three-variable functions instead of a
single three-variable function, it is possible to be solved by the techniques developed
for solution of steady-state conservation laws. In the typical applications of the steady-
state conservation laws nowadays, for example the steady flow around a multi-element
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airfoil, the difficulties due to the increasing of the system size seems not so essential as
that in solving an eigenvalue problem. This brings us new hope to the DFT problems
with large system size.
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